Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(14): 6313-6325, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529628

RESUMO

Urban air quality persists as a global concern, with critical health implications. This study employs a combination of machine learning (gradient boosting regression, GBR) and spatial analysis to better understand the key drivers behind air pollution and its prediction and mitigation strategies. Focusing on New York City as a representative urban area, we investigate the interplay between urban characteristics and weather factors, showing that urban features, including traffic-related parameters and urban morphology, emerge as crucial predictors for pollutants closely associated with vehicular emissions, such as elemental carbon (EC) and nitrogen oxides (NOx). Conversely, pollutants with secondary formation pathways (e.g., PM2.5) or stemming from nontraffic sources (e.g., sulfur dioxide, SO2) are predominantly influenced by meteorological conditions, particularly wind speed and maximum daily temperature. Urban characteristics are shown to act over spatial scales of 500 × 500 m2, which is thus the footprint needed to effectively capture the impact of urban form, fabric, and function. Our spatial predictive model, needing only meteorological and urban inputs, achieves promising results with mean absolute errors ranging from 8 to 32% when using full-year data. Our approach also yields good performance when applied to the temporal mapping of spatial pollutant variability. Our findings highlight the interacting roles of urban characteristics and weather conditions and can inform urban planning, design, and policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Tempo (Meteorologia) , Aprendizado de Máquina
2.
Transp Res D Transp Environ ; 115: 103580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36573137

RESUMO

While the decrease in air pollutant concentration during the COVID-19 lockdown is well documented, neighborhood-scale and multi-city data have not yet been explored systematically to derive a generalizable quantitative link to the drop in vehicular traffic. To bridge this gap, high spatial resolution air quality and georeferenced traffic datasets were compiled for the city of London during three weeks with significant differences in traffic. The London analysis was then augmented with a meta-analysis of lower-resolution studies from 12 other cities. The results confirm that the improvement in air quality can be partially attributed to the drop of traffic density, and more importantly quantifies the elasticity (0.71 for NO2 & 0.56 for PM2.5) of their linkages. The findings can also inform on the future impacts of the ongoing shift to electric vehicles and micro-mobility on urban air quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA